This paper presents results of a detailed investigation of turbine tip-leakage flows at high Mach numbers. The experimental work was carried out using a small blow-down wind tunnel. An idealized blade test section was used to study blade tip-clearance effects in transonic conditions. Unshrouded blade tips are considered and different tip gap heights are investigated. A high blade exit Mach number of Me = 2 was selected deliberately. While conventional transonic turbine stages generally operate at lower supersonic exit Mach numbers, the conditions are representative for ORC turbines. Both experimental and numerical results are presented in this contribution. The results indicate, that tip leakage flow under transonic conditions leads to a complex three-dimensional flow field. A strong interaction between tip gap vortex and trailing edge shocks was observed, that also had a profound effect on the base region. While no final statement on losses could be made in the present configuration, the results indicate a weakened shock system.

This content is only available via PDF.
You do not currently have access to this content.