One application method of active flow control is the exploitation of the interaction between transition and flow separation on a profile. As turbulent flows are able to withstand higher adverse pressure gradients the enforcement of the transition process can be utilized to prevent or to reduce flow separation. This paper focuses on gaining a better understanding of high frequency active flow control (AFC) by fluidic oscillators and its influence on the transition process for a separated boundary layer. Flow control is applied on a highly loaded turbine exit case (TEC) profile which was in particular designed for this application. The profile is investigated in the high-speed cascade wind tunnel at the Bundeswehr University Munich. Significant loss reduction by AFC could be observed by total pressure loss determination in the low Reynolds number regime. In order to gain a better understanding of development of the suction side boundary layer, several boundary layer profiles are determined by hot-wire measurements at six axial positions on the suction side of the profile. Differences between the boundary layer development and the extent of the separation can be detected. Furthermore, a stability analysis of the boundary layer upstream of separation is conducted and compared to the measured frequency spectra.

This content is only available via PDF.
You do not currently have access to this content.