Gas turbines engine designers are leaning towards aircraft engine architectures due to their footprint, weight, and performance advantages. Such engines need some modifications to both the combustion system, to comply with emission limits, and turbine rotational speed. Aero derivative engines maintain the same legacy aircraft engine architecture, and replace the fan and booster with higher speed compressor booster driven by a single stage intermediate turbine. A multistage free power turbine (FPT) sits on a separate shaft to drive compressors for Liquefied Natural Gas (LNG) applications or generators. The intermediate power turbine (IPT) design is important for the engine performance as it drives the booster compressor and sets the inlet boundary conditions to the downstream power turbine. This paper describes the experience of Baker Hughes, a GE company (BHGE) in the design of the intermediate turbine that sits in between a GE legacy aircraft engine core exhaust and the downstream power turbine. This paper focuses on the flow path of the TCF/intermediate turbine and the associated design, as well as on the 3D steady and unsteady CFD assisted design of the IPT stage to control secondary flows in presence of through flow curvature induced by the upstream TCF.

This content is only available via PDF.
You do not currently have access to this content.