For an efficient detection of single or multiple component damages, the knowledge of their impact on the overall engine performance is crucial. This knowledge can be either built up on measurement data, which is hardly available to non-manufacturers or –maintenance companies, or simulative approaches such as high fidelity component simulation combined with an overall cycle analysis.

Due to a high degree of complexity and computational effort, overall system simulations of jet engines are typically performed as 0-dimensional thermodynamic performance analysis, based on scaled generic component maps. The approach of multi-fidelity simulation, allows the replacement of single components within the thermodynamic cycle model by higher-order simulations. Hence, the component behavior becomes directly linked to the actual hardware state of the component model. Hereby the assessment of component deteriorations in an overall system context is enabled and the resulting impact on the overall system can be quantified.

The purpose of this study is to demonstrate the capabilities of multi fidelity simulation in the context of engine condition monitoring.

For this purpose, a 0D-performance model of the IAE-V2527 engine is combined with a CFD model of the appropriate fan component. The CFD model comprises the rotor as well as the outlet guide vane of the bypass and the inlet guide vane of the core section. As an exemplarily component deterioration, the fan blade tip clearance is increased in multiple steps and the impact on the overall engine performance is assessed for typical engine operating conditions.

The harmonization between both simulation levels is achieved by means of an improved map scaling approach using an optimization strategy leading to practicable simulation times.

This content is only available via PDF.
You do not currently have access to this content.