Blade tip clearance (BTC) measurement and active clearance control (ACC) have been and continue to be a fundamental concern in turbomachinery, which are closely bound up with the efficiency and reliability. This paper addresses the BTC measurement and ACC experimental study based on eddy current pulse-trigger method (ECPTM). And the implementation of ACC by axial displacement of the blisk is novel and this paper is the first to present the technique. The purpose of this paper is three fold. The first portion of this paper addresses the BTC measurement in different rotating speeds based on the larger scale rig, where a high-bandwidth (100 kHz) eddy current sensor (HECS) is employed. The results show that the relative errors of BTC values are not much bigger than 20%. The result indicates that ECPTM is more generally applicable in the condition where the eddy current sensor (ECS) is insufficient sampling caused by the limit of narrow bandwidth, especially under the high linear velocity condition. The second portion of this paper describes the ACC system where an electro-hydraulic proportional position control system (EHPPCS) is employed as the actuator. EHPPCS has the advantages of small size, fast response, resistance to load stiffness, large output and simple operation, which is widely applicable to the automatic control system of industrial power. This system optimizes the geometry shapes of casing and the blade tips to create a linear relationship of BTC values related to the axial displacement of the rotor. The BTC values can be transferred into axial displacement of the rotor, and then a voltage/current-BTC values characteristic can be obtained by employing EHPPCS in different rotating speeds. Unfortunately, one of the core components of EHPPCS is an overflow valve with a non-linear and time-variable voltage/current-pressure characteristic. Besides, the pressure-axial displacement characteristic of tilting pad thrust bearing is also non-linear. All those non-linear characteristics make it unsatisfactory to use the conventional PID control algorithm to achieve effective control of the system, which cause many difficulties in controlling of axial displacement of the rotor. So the last portion of this paper is the experimental study on ACC based on the above system by adopting sliding mode adaptive control of nonlinear system (SMACNS). The BTC values have been obtained under different outlet pressures by changing the current in different rotating speeds. The results indicate that this approach has nice robustness and smooth controlled quantity, and can overcome the difficulty caused by nonlinearity, parameter uncertainty and load disturbance. And then, the precision verification and error analysis are made. However, this work is a proof-of-concept demonstration using a laboratory setup providing the basis for BTC active control and blade health monitoring (BHM) based on ECS.
Skip Nav Destination
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
June 26–30, 2017
Charlotte, North Carolina, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5093-0
PROCEEDINGS PAPER
Investigation on the Turbine Blade Tip Clearance Measurement and Active Clearance Control Based on Eddy Current Pulse-Trigger Method Available to Purchase
Weimin Wang,
Weimin Wang
Beijing University of Chemical Technology, Beijing, China
Search for other works by this author on:
Huajin Shao,
Huajin Shao
Beijing University of Chemical Technology, Beijing, China
Search for other works by this author on:
Xing Shao,
Xing Shao
Beijing University of Chemical Technology, Beijing, China
Search for other works by this author on:
Kailiang Song
Kailiang Song
Beijing University of Chemical Technology, Beijing, China
Search for other works by this author on:
Weimin Wang
Beijing University of Chemical Technology, Beijing, China
Huajin Shao
Beijing University of Chemical Technology, Beijing, China
Xing Shao
Beijing University of Chemical Technology, Beijing, China
Kailiang Song
Beijing University of Chemical Technology, Beijing, China
Paper No:
GT2017-63980, V07BT35A016; 11 pages
Published Online:
August 17, 2017
Citation
Wang, W, Shao, H, Shao, X, & Song, K. "Investigation on the Turbine Blade Tip Clearance Measurement and Active Clearance Control Based on Eddy Current Pulse-Trigger Method." Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 7B: Structures and Dynamics. Charlotte, North Carolina, USA. June 26–30, 2017. V07BT35A016. ASME. https://doi.org/10.1115/GT2017-63980
Download citation file:
115
Views
Related Proceedings Papers
Related Articles
A Plexiglas Research Pump With Calibrated Magnetic Bearings/Load Cells for Radial and Axial Hydraulic Force Measurement
J. Fluids Eng (March,1999)
Group Regional Consensus of Networked Lagrangian Systems With Input Disturbances
J. Dyn. Sys., Meas., Control (September,2017)
Proportional-Integral-Observer-Based Backstepping Approach for Position Control of a Hydraulic Differential Cylinder System With Model Uncertainties and Disturbances
J. Dyn. Sys., Meas., Control (December,2018)
Related Chapters
Fault-Tolerant Control of Sensors and Actuators Applied to Wind Energy Systems
Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems
Effect of Copper Foil Thickness on an Eddy Current Sensor Array's Output Characteristics
International Conference on Electronics, Information and Communication Engineering (EICE 2012)
Data Gathering Tools for Integrity Assessment
Pipeline Integrity Assurance: A Practical Approach