The catcher bearing is a crucial part of the magnetic bearing system. It can support the rotor when the magnetic bearing is shut down or malfunctioning and limit the rotor’s position when large vibration occurs. The sleeve bearing has the advantages of a relatively large contact surface area, simple structure and an easily replaced surface. There are already many applications of the sleeve type catcher bearings in the industrial machinery supported by the magnetic bearings. Few papers though provide thorough investigations into the dynamic and thermal responses of the sleeve bearing in the role of a catcher bearing. This paper develops a coupled elastic deformation — heat transfer finite element (FEM) model of the sleeve bearing acting as a catcher bearing. The FEM model investigates the dynamic and thermal behavior when a flexible rotor drops onto the sleeve catcher bearing. The thermal load caused by the thermal expansion is also considered. The flexible rotor is composed of Timoshenko beam elements. A coulomb friction model is used to model the friction force between the rotor and the sleeve bearing surface. The contact force and 2-D temperature distribution of the sleeve bearing are obtained by numerical integration. To validate the FEM code developed by the author, firstly, both the mechanical and thermal static analysis results of the sleeve bearing model are compared with the results calculated by the commercial software, “SolidWorks Simulation”. Secondly, the transient analysis numerical results are compared with the rotor drop test results in reference 13. Additionally, this paper explores the influences of different surface lubrication conditions, different materials, such as stainless steel, bronze, and aluminum, on rotor-sleeve bearing’s dynamic and thermal behavior. This paper lays the foundation of the fatigue life calculation of the sleeve bearing and provides the guideline for the sleeve type catcher bearing design.
Skip Nav Destination
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
June 26–30, 2017
Charlotte, North Carolina, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5092-3
PROCEEDINGS PAPER
Dynamic and Thermal Analysis of Rotor Drop on Sleeve Type Catcher Bearings in Magnetic Bearing Systems
Xiao Kang,
Xiao Kang
Texas A&M University, College Station, TX
Search for other works by this author on:
Alan Palazzolo
Alan Palazzolo
Texas A&M University, College Station, TX
Search for other works by this author on:
Xiao Kang
Texas A&M University, College Station, TX
Alan Palazzolo
Texas A&M University, College Station, TX
Paper No:
GT2017-63662, V07AT34A015; 16 pages
Published Online:
August 17, 2017
Citation
Kang, X, & Palazzolo, A. "Dynamic and Thermal Analysis of Rotor Drop on Sleeve Type Catcher Bearings in Magnetic Bearing Systems." Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics. Charlotte, North Carolina, USA. June 26–30, 2017. V07AT34A015. ASME. https://doi.org/10.1115/GT2017-63662
Download citation file:
34
Views
Related Proceedings Papers
Related Articles
Thermally Induced Seizure in Journal Bearings During Startup and Transient Flow Disturbance
J. Tribol (October,2003)
Dynamic and Thermal Analysis of Rotor Drop on Sleeve Type Catcher Bearings in Magnetic Bearing Systems
J. Eng. Gas Turbines Power (February,2018)
Related Chapters
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design
Research Tools
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications
Fatigue Analysis in the Connecting Rod of MF285 Tractor by Finite Element Method
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)