A fatigue life prediction method using strain energy density as a prediction parameter has had success predicting the lifetimes greater than 105 cycles for room and elevated temperatures under axial, bending, and shear loading for different material systems. This method uses monotonic strain energy density determined at the macroscale as a damage parameter for fatigue, despite the differences in damage behavior of static and dynamic loading. Recent studies have brought this method into question, as cyclic energy for low cycle fatigue loading has been found to be significantly greater. Amendments of the fatigue life model have addressed this discrepancy for continuum level measurements, but have yet to examine the localized effects of machined notches. This study investigates strain energy density for static and dynamic loading at cycle counts from one (monotonic) to 105 for plain and notched specimens, exposing the differences between damaging strain energy density at continuum and local length scales. Continuum level strain energy density is simply determined by using the load and strain feedback from a standard mechanical test procedure using a common extensometer and a servohydraulic load frame. Local strain energy density is determined more elaborately by using three methods. Localized energy is determined from compliance and a closed form relationship between stress intensity factor and strain energy density. The influence of the notch is considered in the stress intensity calculation, but its influence on stress concentration is disregarded. All calculations are based on the net section stress and linear elasticity is assumed. The analyses revealed two distinct groups, but one data set indicated coincidence with total accumulated strain energy density. These data also corroborate the theory that average strain energy density at the continuum level changes mechanisms governing damage evolution. Monotonic strain energy density is refuted as an appropriate damage parameter to predict fatigue lifetimes, and a statically equivalent strain energy density is proposed. An amended continuum level model is proposed, increasing prediction accuracy over fatigue lifetimes less than 106. Additionally, a localized model is proposed, expanding prediction capability to geometries with notch like features.
Skip Nav Destination
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
June 26–30, 2017
Charlotte, North Carolina, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5092-3
PROCEEDINGS PAPER
Multiscale Investigation of Strain Energy Density for Fatigue Life Prediction
Casey M. Holycross,
Casey M. Holycross
Air Force Research Laboratory, Wright-Patterson AFB, OH
Search for other works by this author on:
Onome E. Scott-Emuakpor,
Onome E. Scott-Emuakpor
Air Force Research Laboratory, Wright-Patterson AFB, OH
Search for other works by this author on:
Tommy J. George,
Tommy J. George
Air Force Research Laboratory, Wright-Patterson AFB, OH
Search for other works by this author on:
M.-H. H. Shen
M.-H. H. Shen
Ohio State University, Columbus, OH
Search for other works by this author on:
Casey M. Holycross
Air Force Research Laboratory, Wright-Patterson AFB, OH
Onome E. Scott-Emuakpor
Air Force Research Laboratory, Wright-Patterson AFB, OH
Tommy J. George
Air Force Research Laboratory, Wright-Patterson AFB, OH
M.-H. H. Shen
Ohio State University, Columbus, OH
Paper No:
GT2017-64791, V07AT31A015; 12 pages
Published Online:
August 17, 2017
Citation
Holycross, CM, Scott-Emuakpor, OE, George, TJ, & Shen, MH. "Multiscale Investigation of Strain Energy Density for Fatigue Life Prediction." Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics. Charlotte, North Carolina, USA. June 26–30, 2017. V07AT31A015. ASME. https://doi.org/10.1115/GT2017-64791
Download citation file:
20
Views
0
Citations
Related Proceedings Papers
Related Articles
A Study on Low Cycle Fatigue Life Assessment of Notched Specimens Made of 316 LN Austenitic Stainless Steel
J. Pressure Vessel Technol (April,2022)
Frequency and Hold-Time Effects on Low Cycle Fatigue Life of Notched Specimens at Elevated Temperature
J. Eng. Mater. Technol (January,1989)
Crack Initiation Under Low-Cycle Multiaxial Fatigue in Type 316L Stainless Steel
J. Pressure Vessel Technol (May,1983)
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Analysis of Components in VIII-2
Guidebook for the Design of ASME Section VIII Pressure Vessels, Third Edition