The cooling air in the secondary air system of gas turbines is controlled and metered by numerous restrictors, mainly in the shape of orifices. The ability to understand and predict the associated pressure losses are important in order to improve the air flow in the secondary air system. This experimental study investigates the behavior of the discharge coefficient for circular orifices with inlet cross flow which is a common flow case in gas turbines. Examples of this are at the inlet of a film cooling hole or the feeding of air to a blade through an orifice in a rotor disc.

Measurements were conducted for a total number of 38 orifices, covering a wide range of length-to-diameter ratios, including short and long orifices with varying inlet geometries. Up to five different chamfer-to-diameter and radius-to-diameter ratios were tested per orifice length. Furthermore, the static pressure ratio across the orifice was varied between 1.05 and 1.6 for all examined orifices.

The results of this comprehensive investigation demonstrate the beneficial influence of rounded inlet geometries and the ability to decrease pressure losses, which is especially true for higher cross flow ratios where the reduction of the pressure loss in comparison to sharp edged holes can be as high as 54%. With some exceptions, the chamfered orifices show a similar behavior as the rounded ones but with generally lower discharge coefficients. Nevertheless, a chamfered inlet yields lower pressure losses than a sharp edged inlet. The obtained experimental data was used to develop two correlations for the discharge coefficient as a function of geometrical as well as flow properties.

This content is only available via PDF.
You do not currently have access to this content.