Slot film cooling in an accelerating boundary layer with high free-stream turbulence is studied numerically using Large Eddy Simulations (LES). Recent cooling designs of turbine airfoils (such as double-wall cooling) enable slot cooling configurations that are known to provide improved cooling effectiveness over discrete hole cooling systems. Calculations are done for a symmetrical leading edge geometry with the slot fed by a plenum populated with pin fins. To generate the inflow turbulence, the Synthetic Eddy Method (SEM) is used by which the turbulence intensity and length scales in each direction can be specified at the inflow. Different levels of turbulence are imposed at the inflow cross-plane. For the inflow at the plenum, an a priori simulation has been performed in the plenum with pin fins, and the velocity signals are stored at a plane downstream of the pin fins over a sufficient period of time, and are used as the inflow boundary condition in the plenum. Calculations are done for a Reynolds number of 250,000 and freestream turbulence levels of 0.7%, 3.5%, 7.8% and 13.7% are reported. These conditions correspond to the experimental measurements of Busche and Ames (2014). Numerical results show good agreement with experiment data and show the observed decay of thermal effectiveness with turbulence intensity. The turbulence and non-uniformity exiting the slot are shown to play an important role in the cooling effectiveness distributions downstream of the slot. To provide a better understanding of the flow physics and heat transfer, the mean flowfield and turbulence statistics are studied. Generation of freestream structures is observed at the leading edge, and the amplification of the corresponding fluctuations downstream is identified as one of the parameters influencing the slot cooling performance. Predictions show the higher growth rate of the thermal boundary layer with increasing turbulence which is a clear indication of the increase in turbulent thermal diffusivity and reduction of the effective turbulence Prandtl number. The self-similar temperature profiles deviate from those measured under low freestream turbulence condition.
Skip Nav Destination
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
June 26–30, 2017
Charlotte, North Carolina, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5087-9
PROCEEDINGS PAPER
Simulations of Slot Film-Cooling With Freestream Acceleration and Turbulence
Yousef Kanani,
Yousef Kanani
Illinois Institute of Technology, Chicago, IL
Search for other works by this author on:
Sumanta Acharya,
Sumanta Acharya
Illinois Institute of Technology, Chicago, IL
Search for other works by this author on:
Forrest Ames
Forrest Ames
University of North Dakota, Grand Forks, ND
Search for other works by this author on:
Yousef Kanani
Illinois Institute of Technology, Chicago, IL
Sumanta Acharya
Illinois Institute of Technology, Chicago, IL
Forrest Ames
University of North Dakota, Grand Forks, ND
Paper No:
GT2017-65050, V05AT12A016; 13 pages
Published Online:
August 17, 2017
Citation
Kanani, Y, Acharya, S, & Ames, F. "Simulations of Slot Film-Cooling With Freestream Acceleration and Turbulence." Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 5A: Heat Transfer. Charlotte, North Carolina, USA. June 26–30, 2017. V05AT12A016. ASME. https://doi.org/10.1115/GT2017-65050
Download citation file:
34
Views
Related Proceedings Papers
Related Articles
Prediction of Reynolds Number Effects on Low-Pressure Turbines Using a High-Order ILES Method
J. Turbomach (March,2020)
Clocking Effects of Inlet Nonuniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
J. Turbomach (February,2016)
A Detailed Analysis of Film Cooling Physics: Part III— Streamwise Injection With Shaped Holes
J. Turbomach (January,2000)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Extended Surfaces
Thermal Management of Microelectronic Equipment
Extended Surfaces
Thermal Management of Microelectronic Equipment, Second Edition