In film cooling flows, it is important to know the temperature distribution resulting from the interaction between a hot main flow and a cooler jet. However, current Reynolds-averaged Navier-Stokes (RANS) models yield poor temperature predictions. A novel approach for RANS modeling of the turbulent heat flux is proposed, in which the simple gradient diffusion hypothesis (GDH) is assumed and a machine learning algorithm is used to infer an improved turbulent diffusivity field. This approach is implemented using three distinct data sets: two are used to train the model and the third is used for validation. The results show that the proposed method produces significant improvement compared to the common RANS closure, especially in the prediction of film cooling effectiveness.

This content is only available via PDF.
You do not currently have access to this content.