This paper investigates the impacts of uneven wall heating conditions under different Buoyancy numbers on flow field and heat transfer performance of a rotating channel with one side smooth and one side roughened by 45 degree inclined ribs. Parametric RANS simulations were conducted under two different wall heating conditions: only ribbed wall heated, as in experiment setup, and all walls heated, under three different Buoyancy numbers. Results are compared, when available, with experimental results.

Numerical results show that uneven wall heating has only a minor impact on non-rotating cases and very low buoyancy rotating cases. However, it has a significant influence, on both, the heat transfer behaviour and the flow field, when the Buoyancy number is large. In the ribbed trailing rotating tests, the all walls heated cases show significantly higher heat transfer rate than only the ribbed wall heated cases. The discrepancy is enlarged as Buoyancy number increases. The heat transfer in the all walls heated case increases monotonically with the Buoyancy number whereas in the ribbed wall heated case is slight reduced. In the ribbed leading rotating tests, the heat transfer sensitivity to the heating conditions is not conspicuous, and for both cases, the heat transfer level slightly reduced as Buoyancy number increases.

The flow field investigation shows that, there is a significant displacement of main flow in the all walls heated cases than only the ribbed wall heated cases under high Buoyancy numbers. This displacement is due to the buoyancy effect and responsible for the heat transfer differences in uneven heating problems. According to the results obtained in the paper, we conclude that when buoyancy effects are relevant, the heating settings can play a significant role in the heat transfer mechanisms and therefore in the experimental and numerical results.

This content is only available via PDF.
You do not currently have access to this content.