We report experimental evidence of thermoacoustic bi-stability in a lab-scale turbulent combustor over a well-defined range of fuel-air equivalence ratios. Pressure oscillations are characterized by an intermittent behavior with “bursts”, i.e. sudden jumps between low and high amplitudes occurring at random time instants. The corresponding probability density functions of the acoustic pressure signal show clearly separated maxima when the burner is operated in the bi-stable region. A flame describing function, which links acoustic pressure to heat release rate fluctuations, is estimated at the modal frequency from simultaneously recorded flame chemiluminescence and acoustic pressure. The representation of its statistics is new and particularly informative. It shows that this describing function is characterized, in average, by a nearly constant gain and by a significant drift of the phase as function of the oscillation amplitude. This finding suggests that the bi-stability does not result from an amplitude-dependent balance between flame gain and acoustic damping, but rather from the non-constant phase difference between the acoustic pressure and the coherent fluctuations of heat release rate.

This content is only available via PDF.
You do not currently have access to this content.