This paper reports an investigation of soot formation in ethylene-air partially premixed flames over a wide range of premixedness. An axisymmetric co-flow configuration is chosen to establish partially premixed flames from the fully non-premixed to fully premixed conditions. Reducing the fuel flow rate as a percentage of the maximum from the core stream and supplying the same to the annular stream leads to stratification of the reactant concentrations. The thermal power, overall equivalence ratio, and the average velocity in the both streams are maintained constant under all conditions. The soot volume fraction is estimated by light attenuation method, and laser induced incandescence is performed to map the soot distribution in the flow field. The soot volume fraction is observed to exhibit a ‘S’-type trend as the conditions are traversed from near the premixed to the non-premixed regimes. That is, when traversing from the non-premixed to near-premixed regime, below 60% fuel flow rate in core, the soot volume fraction drops drastically. The onset of sooting in the partially premixed flames is clearly seen to be at the tip of the rich-premixed flame branch of their triple flame structure, which advances upstream towards the base of the flame as the premixing is reduced. The ‘S’-type variation is clearly the effect of partial premixing, more specifically due to the presence of the lean premixed flame branch of the triple flame. Laser induced incandescence intensities are insufficient to capture the upstream advance of the soot onset with decreased premixedness. So, a quick and inexpensive technique to isolate soot luminescence through flame imaging is presented in the paper involving quasi-simultaneous imaging with a 650 nm and a BG-3 filter using a normal color camera.

This content is only available via PDF.
You do not currently have access to this content.