In this work, results of comprehensive high-pressure tests and numerical simulations of high momentum jet flames in an optically accessible combustion chamber are presented. A generic single nozzle burner was designed as a full-scale representation of one duct of a high temperature FLOX® gas turbine combustor with a model pilot burner supporting the main nozzle. As an advanced step of the FLOX® gas turbine combustor development process, tests and simulations of the entire burner system (consisting of a multi nozzle main stage plus a pilot stage) are complemented with this work on an unscaled single nozzle combustor, thus supporting the development and testing of sub concepts and components like the mixing section and dual-fuel injectors. These injectors incorporate a gaseous fuel stage and a spray atomizer for liquid fuels, both separately exchangeable for testing of different fuel placement concepts.

The combustor was successfully operated at gas turbine relevant conditions with natural gas including a variation of the Wobbe index, and with light heating oil with and without water admixture. The presented work is the first of two contributions and covers the description of the experimental setup, an overview of the numerical methods, high-pressure test results for different fuels and variations of the operating conditions including exhaust gas measurements and basic optical diagnostic methods, together with CFD results for several cases. The other part will present detailed and focused investigations of few conditions by complex and extensive optical and laser combustion diagnostics.

This content is only available via PDF.
You do not currently have access to this content.