Alternative liquid fuels can contain hydrocarbons of different types and chain lengths and the fuel composition has an influence on combustion behavior. In this study, the influence of liquid single-component fuels on exhaust gas emissions of a gas turbine model combustor for swirl-stabilized spray flames was investigated under atmospheric pressure. The nozzle exhibited a dual-swirl geometry and a prefilming airblast atomizer. The spray was characterized by Phase Doppler Anemometry (PDA) and Mie scattering measurements and the flame CH* chemiluminescence was measured. Six single-component hydrocarbons were chosen: three linear alkanes (n-hexane, n-nonane, n-dodecane), one cyclic alkane (cyclohexane), one branched alkane (iso-octane) and one aromatic hydrocarbon (toluene). Kerosene Jet A-1 was used as a technical reference. Results show minor differences in CO emissions and significant differences in NOx emissions of the various fuels at comparable flow conditions and adiabatic flame temperatures. The measurements indicate a correlation between the nitric oxide emissions and the spray quality.

This content is only available via PDF.
You do not currently have access to this content.