This work presents an exergy analysis and performance assessment of three recuperative thermodynamic cycles for gas turbine applications. The first configuration is the conventional recuperative cycle in which a heat exchanger is placed after the power turbine. In the second configuration, referred as alternative recuperative cycle, a heat exchanger is placed between the high pressure and the power turbine, while in the third configuration, referred as staged heat recovery cycle, two heat exchangers are employed, the primary one between the high and power turbines and the secondary at the exhaust, downstream the power turbine.

The first part of this work is focused on a detailed exergetic analysis on conceptual gas turbine cycles for a wide range of heat exchanger performance parameters. The second part focuses on the implementation of recuperative cycles in aero engines, focused on the MTU-developed Intercooled Recuperative Aero (IRA) engine concept, which is based on a conventional recuperation approach. Exergy analysis is applied on specifically developed IRA engine derivatives using both alternative and staged heat recovery recuperation concepts to quantify energy exploitation and exergy destruction per cycle and component, showing the amount of exergy that is left unexploited, which should be targeted in future optimization actions.

This content is only available via PDF.
You do not currently have access to this content.