The future of aviation relies on the integration of airframe and propulsion systems to increase fuel efficiency and improve the aerodynamic performance of aircraft. This need brings design challenges, such as the ingestion of non-uniform flows by turbofan engines. In this work, we seek to understand the behavior of a complex distorted inflow in a full-scale engine rig. A 21-inch diameter distortion screen previously designed is used to mimic the behavior of an adverse inlet flow encountered by a hybrid wing body type of aircraft. Three measurement planes along the inlet of the research engine are selected for the acquisition of data using particle image velocimetry at a duct diameter Reynolds number of 2.6 million. The resulting mean velocity profiles, velocity gradients and turbulent stresses are analyzed in order to describe the evolution of the flow along the inlet of the turbofan engine and as it approaches the fan face. As flow develops downstream, the vortex present in the profile migrates clockwise, opposite to the rotation of the fan, and towards the spinner of the engine. The turbulent stresses indicate that the center of the vortex meanders around a preferred location, and that location tightens as flow gets closer to the fan, yielding a smaller radius mean vortex near the fan. An analysis of velocity gradients shows the influence of the distortion screen in the flow, mainly in the streamwise direction, where signature features of the distortion device are observed, as an effect from the wakes of the vanes. The results obtained shed light onto the aerodynamics of swirling flows representative of distorted turbofan inlets, while further advancing the understanding of the complex vane technology presented herein for advanced ground testing of swirling inflows.

This content is only available via PDF.
You do not currently have access to this content.