This paper describes studies completed using a quarter-scaled rig to assess the impact of turbine exit swirl angle and strut stagger on a turbine exhaust system consisting of an integral diffuser-collector. Advanced testing methods were applied to ascertain exhaust performance for a range of inlet conditions aerodynamically matched to flow exiting an industrial gas turbine. Flow visualization techniques along with complementary Computational Fluid Dynamics (CFD) predictions were used to study flow behavior along the diffuser endwalls. Complimentary CFD analysis was also completed with the aim to ascertain the performance prediction capability of modern day analytical tools for design phase and off-design analysis. The K-Epsilon model adequately captured the relevant flow features within both the diffuser and collector, and the model accurately predicted the recovery at design conditions. At off-design conditions, the recovery predictions were found to be pessimistic. The integral diffuser-collector exhaust accommodated a significant amount of inlet swirl without a degradation in performance, so long as the inlet flow direction did not significantly deviate from the strut stagger angle. Strut incidence at the hub was directly correlated with reduction in overall performance, whereas the diffuser-collector performance was not significantly impacted by strut incidence at the shroud.

This content is only available via PDF.
You do not currently have access to this content.