The application of a new computational capability for accurate and efficient high-fidelity scale-resolving simulations of turbomachinery is presented. The focus is on the prediction of heat transfer and boundary layer characteristics with comparisons to the experiments of Arts et al. for an uncooled, transonic, linear high-pressure turbine (HPT) inlet guide vane cascade that includes the effects of elevated inflow turbulence. The computational capability is based on an entropy-stable, discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy. The suction side of the vane undergoes natural transition for the clean inflow case, while bypass transition mechanisms are observed in the presence of elevated inflow turbulence. The airfoil suction-side boundary layer turbulence characteristics during the transition process thus differ significantly between the two cases. Traditional simulations based on the Reynolds-averaged Navier Stokes (RANS) fail to predict these transition characteristics. The heat transfer characteristics for the simulations with clean inflow agree well with the experimental data, while the heat transfer characteristics for the bypass transition cases agree well with the experiment when higher inflow turbulence levels are prescribed. The differences between the clean and inflow turbulence cases are also highlighted through a detailed examination of the characteristics of the transitional and turbulent flow fields.

This content is only available via PDF.
You do not currently have access to this content.