In this paper, the effect of a novel honeycomb tip on suppressing tip leakage flow in a highly-loaded turbine cascade has been experimentally and numerically studied. The research focuses on the mechanisms of honeycomb tip on suppressing tip leakage flow and affecting the secondary flow in the cascade, as well as the influences of different clearance heights on leakage flow characteristics. In addition, two kinds of local honeycomb tip structures are pro-posed to explore the positive effect on suppressing leakage flow in simpler tip honeycomb structures.

Based on the experimental and numerical results, the physical processes of tip leakage flow and its interaction with main flow are analyzed, the following conclusions can be obtained. Honeycomb tip rolls up a number of small vortices and radial jets in regular hexagonal honeycomb cavities, increasing the flow resistance in the clearance and reducing the velocity of leakage flow. As a result, the structure of honeycomb tip not only suppresses the leakage flow effectively, but also has positive effect on reducing the associated losses in cascade by reducing the strength of leakage vortex. Compare to the flat tip cascade at 1%H gap height, the relative leakage flow in honeycomb tip cascade reduces from 3.05% to 2.73%, and the loss at exit section is also decreased by 10.63%. With the increase of the gap height, the tip leakage flow and loss have variations of direct proportion with it, but their growth rates in the honeycomb tip cascade are smaller. Consider the abradable property of the honeycomb seal, a smaller gap height is allowed in the cascade with honeycomb tip, and that means honeycomb tip has better effect on suppressing leakage flow. Two various local honeycomb tip structures has also been discussed. It shows that local raised honeycomb tip has better suppressing leakage flow effect than honeycomb tip, while local concave honeycomb tip has no more effect than honeycomb tip. Compare to flat tip cascade, the leakage flow in honeycomb tip cascade, local concave tip cascade and local raised honeycomb tip cascade decrease by nearly 17.33%, 15.51% and 30.86% respectively, the losses at exit section is reduced by 13.38%, 12% and 28.17% respectively.

This content is only available via PDF.
You do not currently have access to this content.