The Inlet distortion, which may lead to the stability reduction or structure failure, is often non-ignorable in an axial compressor. In the paper, the three-dimensional unsteady numerical simulations on the flow in NASA rotor 67 are carried out to investigate the effect of inlet distortion on the performance and flow structure in a transonic axial compressor rotor. A sinusoidal circumferential total pressure distortion with eleven periods per revolution is adopted to study the interaction between the transonic rotor and inlet circumferential distortion. Concerning the computational expense, the flow in two rotor blade passages is calculated. Various intensities of the total pressure distortion are discussed, and the detailed flow structures under different rotating speeds near the peak efficiency condition are analyzed. It is found that the distortion has a positive effect on the flow near the hub. Even though there is no apparent decrease in the rotor efficiency or total pressure ratio, an obvious periodic loading exists over the whole blade. The blade loadings are concentrated in the region near the leading edge of the rotor blade or regions affected by the oscillating shocks near the pressure side. The time averaged location of shock structure changes little with the distortion, and the motion of shocks and the interactions between the shock and the boundary layer make a great contribution to the instability of the blade structure.

This content is only available via PDF.
You do not currently have access to this content.