Computational Fluid Dynamics (CFD) simulations are becoming increasingly important to enhancing the understanding of rotor aerodynamics and improving blade design for wind turbines. The present study addresses the effect of turbulence treatment on the CFD-based performance assessment of wind turbines by successively increasing the modeling depth. A process for 2D and 3D CFD simulations is described, which is based on the geometry of the NREL 5MW reference wind turbine. It is shown that the main differences between fully turbulent computations and transition model simulations with and without additional curvature correction model occur in the inner blade region, and increase in 3D flow regimes. Literature and the findings of the present study lead to the conclusion that simulations with the transition model in conjunction with the curvature correction model should be preferred. The resulting power output of this setup is also in good agreement with the Blade Element Momentum (BEM) calculation.

This content is only available via PDF.
You do not currently have access to this content.