Turbine blade flutter is a concern for the manufacturers of steam turbines. Typically, the length of last stage blades of large steam turbines is over one meter. These long blades are susceptible to flutter because of their low structural frequency and supersonic tip speeds with oblique shocks and their reflections. Although steam condensation has usually occurred by the last stage, ideal gas is mostly assumed when performing flutter analysis for steam turbines.

The results of a flutter analysis of a 2D steam turbine test case which examine the influence of non-equilibrium wet steam are presented. The geometry and flow conditions of the test case are supposed to be similar to the flow near the tip in a steam turbine as this is where most of the unsteady aerodynamic work contributing to flutter is done. The unsteady flow simulations required for the flutter analysis are performed by ANSYS CFX. Three fluid models are examined: ideal gas, equilibrium wet steam (EQS) and non-equilibrium wet steam (NES), of which NES reflects the reality most.

Previous studies have shown that a good agreement between ideal gas and EQS simulations can be achieved if the prescribed ratio of specific heats is equal to the equilibrium polytropic index of the wet steam flow through the turbine.

In this paper the results of a flutter analysis are presented for the 2D test case at flow conditions with wet steam at the inlet. The investigated plunge mode normal to chord is similar to a bending mode around the turbine axis for a freestanding blade in 3D. The influence of the overall wetness fraction and the size of the water droplets at the inlet are examined. The results show an increase of aerodynamic damping for all investigated interblade phase angles with a reduction of droplet size. The influence of the wetness fraction is in comparison of less importance.

This content is only available via PDF.
You do not currently have access to this content.