Oil-free bearings for automotive turbochargers (TCs) offer unique advantages eliminating oil-related catastrophic TC failures (oil coking, severe bearing wear/seizure, and significant oil leakage, for example) while increasing overall system reliability and reducing maintenance costs. The main objective of the current investigation is to advance the technology of the gas foil bearings (GFBs) for automotive TCs by demonstrating their reliability, durability, and static/dynamic force characteristics desirable in extreme speed and temperature conditions. The paper compares drag friction and on-engine performances of an oil-free TC supported on GFBs against an oil-lubricated commercial production TC with identical compressor and turbine wheels. Extensive coast-down and fast acceleration TC rotor speed tests are conducted in a cold-air driven high-speed test cell. Rotor speed coast-down tests demonstrate that the differences in the identified rotational viscous drag coefficients and drag torques between the oil-free and production TCs are quite similar. In addition, rotor acceleration tests show that the acceleration torque of the oil-free TC rotor, when airborne, is larger than the production TC rotor due to the large mass and moment of inertia of the oil-free TC rotor even though air has lower viscosity than the TC lubricant oil. Separate experiments of the oil-free TC installed on a diesel engine demonstrate the reliable dynamic forced performance and superior rotor dynamic stability of the oil-free TC over the oil-lubricated TC. The post on-engine test inspection of the oil-free TC test hardware reveals no evidence of significant surface wear between the rotor and bearings, as well as no dimensional changes in the rotor outer surfaces and bearing top foil inner surfaces. The present experimental characterization and verified robustness of the oil-free TC system continue to extend the GFB knowledge database.
Skip Nav Destination
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
June 13–17, 2016
Seoul, South Korea
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4986-6
PROCEEDINGS PAPER
Oil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers
Zachary Ashton
Zachary Ashton
BorgWarner Turbo Systems, Arden, NC
Search for other works by this author on:
Keun Ryu
Hanyang University, Ansan, Korea
Zachary Ashton
BorgWarner Turbo Systems, Arden, NC
Paper No:
GT2016-57855, V008T23A034; 11 pages
Published Online:
September 20, 2016
Citation
Ryu, K, & Ashton, Z. "Oil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers." Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. Seoul, South Korea. June 13–17, 2016. V008T23A034. ASME. https://doi.org/10.1115/GT2016-57855
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings
J. Eng. Gas Turbines Power (March,2012)
Operation of a Mesoscopic Gas Turbine Simulator at Speeds in Excess of 700,000 rpm on Foil Bearings
J. Eng. Gas Turbines Power (January,2007)
Measurements of Drag Torque, Lift-Off Journal Speed, and Temperature in a Metal Mesh Foil Bearing
J. Eng. Gas Turbines Power (November,2010)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Understanding the Problem
Design and Application of the Worm Gear
Development and Structure of the German Common Cause Failure Data Pool (PSAM-0020)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)