Decentralized power and heat generation is a growing trend throughout the world. In smaller applications, electrical power output less than few megawatts, reciprocating engines have dominated the market. In recent years, small sized gas turbines have emerged as challengers for the reciprocating engines. The small gas turbines have a growing share of the decentralized energy market, which itself is rapidly growing. Hence, improvements in small gas turbine efficiency have a significant impact from the economic and environmental perspective.

In this paper, the design of a high efficiency 400 kW gas turbine prototype is described and discussed. The prototype is a two-spool, recuperated and intercooled gas turbine where both spools comprise of a radial compressor and turbine, a permanent magnet electric generator, an axial and two radial active magnetic bearings and two safety bearings.

The prototype design was divided into five categories and each of the categories are discussed. The categories were: the process design, the turbomachinery design, the generator and electrical design, bearing design and rotor dynamic analysis, and mechanical design. The design of recuperator, intercooler, and combustion chamber were outsourced. Hence, they are not discussed in this paper.

The prototype design process showed the readiness of the chosen technological selections, as well it showed that the type of machine under discussion can be designed and manufactured.

This content is only available via PDF.
You do not currently have access to this content.