A flutter phenomenon was observed in a 1.5-stage configuration at the Darmstadt transonic compressor. This phenomenon is investigated numerically for different compressor speeds. The flutter occurs for the second eigenmode of the rotor blades and is caused by tip clearance flow which is able to pass through multiple rotor gaps at highly throttled operating points. The vibration pattern during flutter is accompanied by a pressure fluctuation pattern of the tip clearance flow which is interacting with the blade motion causing the aeroelastic instability. The velocity of the tip clearance flow fluctuation is about 50% of the blade tip speed for simulation and experiment and also matches the mean convective velocity inside the rotor gap. This is consistent for all compressor speeds. From this investigations, general guidelines are drawn which can be applied at an early stage during compressor design to evaluate the susceptibility to this kind of blade vibration.

This content is only available via PDF.
You do not currently have access to this content.