Materials engineering and damage tolerance assessment have traditionally been performed as disjoint processes involving repeated tests that can ultimately prolong the time required for certification of new materials. Computational advances have been made both in the prediction of material properties and probabilistic damage tolerance analysis, but have been pursued primarily as independent efforts. Integrated computational materials engineering (ICME) has the potential to significantly reduce the time required for development and insertion of new materials in the gas turbine industry. A manufacturing process software tool called DEFORM™ has been linked with a probabilistic damage tolerance analysis (PDTA) software tool called DARWIN® to form a new capability for ICME of gas turbine engine components. DEFORM simulates rotor manufacturing processes including forging, heat treating, and machining to compute residual stress and strain, track anomaly location, and predict microstructure including grain size and orientation. DARWIN integrates finite element stress analysis results, fracture mechanics models, material anomaly data, probability of anomaly detection, and inspection schedules to compute the probability of fracture of a gas turbine engine rotor as a function of operating cycles. Previous papers have focused on probabilistic modeling of residual stresses in DARWIN based on manufacturing process training data from DEFORM. This paper describes recent efforts to extend the probabilistic link between DEFORM and DARWIN to enable modeling of residual strain, average grain size, and ALA (unrecrystalized) grain size as random variables. Gaussian Process modeling is used to estimate the relationship among model responses and material processing parameters. These random variables are applied to microstructure-based fatigue crack nucleation and growth models for use in probabilistic risk assessments. The integrated DARWIN-DEFORM capability is demonstrated for a representative engine disk model which illustrates the influences of manufacturing-induced random variables on component fracture risk. The results provide critical insight regarding the potential benefits of integrating probabilistic computational material processing models with probabilistic damage tolerance-based risk assessment.
Skip Nav Destination
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
June 13–17, 2016
Seoul, South Korea
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4984-2
PROCEEDINGS PAPER
Micromechanics-Based Fracture Risk Assessment Using Integrated Probabilistic Damage Tolerance Analysis and Manufacturing Process Models
Michael P. Enright,
Michael P. Enright
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
R. Craig McClung,
R. Craig McClung
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Kwai S. Chan,
Kwai S. Chan
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
John McFarland,
John McFarland
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Jonathan P. Moody,
Jonathan P. Moody
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
James C. Sobotka
James C. Sobotka
Southwest Research Institute, San Antonio, TX
Search for other works by this author on:
Michael P. Enright
Southwest Research Institute, San Antonio, TX
R. Craig McClung
Southwest Research Institute, San Antonio, TX
Kwai S. Chan
Southwest Research Institute, San Antonio, TX
John McFarland
Southwest Research Institute, San Antonio, TX
Jonathan P. Moody
Southwest Research Institute, San Antonio, TX
James C. Sobotka
Southwest Research Institute, San Antonio, TX
Paper No:
GT2016-58089, V07BT29A004; 10 pages
Published Online:
September 20, 2016
Citation
Enright, MP, McClung, RC, Chan, KS, McFarland, J, Moody, JP, & Sobotka, JC. "Micromechanics-Based Fracture Risk Assessment Using Integrated Probabilistic Damage Tolerance Analysis and Manufacturing Process Models." Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 7B: Structures and Dynamics. Seoul, South Korea. June 13–17, 2016. V07BT29A004. ASME. https://doi.org/10.1115/GT2016-58089
Download citation file:
55
Views
Related Proceedings Papers
Related Articles
Probabilistic Fretting Fatigue Assessment of Aircraft Engine Disks
J. Eng. Gas Turbines Power (July,2010)
Transition of Crack Propagation Path Under Varied Levels of Load in Bimodal Grain Size Al-Mg Alloy
J. Eng. Mater. Technol (October,2011)
Probabilistic Fracture Mechanics for Mature Service Frame Rotors
J. Eng. Gas Turbines Power (July,2021)
Related Chapters
QRAS Approach to Phased Mission Analysis (PSAM-0444)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Introductory Information
The Stress Analysis of Cracks Handbook, Third Edition
Constructing Dynamic Event Trees from Markov Models (PSAM-0369)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)