Nozzle guide vanes (NGV) of gas turbine engines are the first components to withstand the impingement of hot combustion gas, and therefore often suffer thermal fatigue failures in service. A lifing analysis is performed for the NGV of a gas turbine engine using the integrated creep-fatigue theory (ICFT). With the constitutive formulation of inelastic strain in terms of mechanism-strain components such as rate-independent plasticity, dislocation glide-plus-climb, and grain boundary sliding, the dominant deformation mechanisms at the critical locations are thus identified quantitatively with the corresponding mechanism-strain component. The material selection scenarios are discussed with regards to damage accumulated during take-off and cruise. The interplay of those deformation mechanisms in the failure process are elucidated such that an “optimum” material selection solution may be achieved.

This content is only available via PDF.
You do not currently have access to this content.