SiC-based ceramic matrix composites (CMC) in turbine engine applications must sustain fatigue residual life after foreign object impacts that might occur in services. Experiments, nondestructive evaluations (NDE), and simulations have illustrated good correlations between impact energy and foreign object damage (FOD) and fatigue life after impact at room and 1200°C temperatures. Flat and curved five-harness satin (5HS) woven CMCs specimens, consisting of Hi-Nicalon Type S (Goodrich) and Hi-Nicalon (Rolls Royce) in MI SiC matrix, were tested and simulated. Tests measured electrical resistivity (ER), acoustic emission (AE), and microscopy. Simulations used a building block validation strategy and the Multi-Scale Progressive Failure Analysis (MS-PFA) method. Simulations complemented experiments in understanding and predicting the damage states, of impact, and fatigue residual strength after impact of CMCs to form a more complete understanding of the damage mechanisms involved in such events. The GENOA software developed by Alpha STAR Corporation [1, 2, 3] is capable of Durability and Damage Tolerance (D&DT), life, and reliability predictions by means of multi-scale progressive failure analysis (damage and fracture evolution). In general, CMCs are modeled using effective fiber, matrix, and interface constitutive behaviors, from which the lamina stiffness, strengths, and the strain rate effect can be derived. Similarly, the fatigue strength and stiffness degradation, and the effect of defects in a matrix micro crack density, voids, as well as fibers waviness, and damages after impact can be characterized. The final simulation is static loading and impact on a generic CMC SiC/SiC (Sylramic MI 5HS) blade which is to be used in future blade optimization based on minimizing damage incurred.

The GENOA software platform supports FAA recommended ASTM standard Building-Block Validation Strategy with reduced tests conducting: 1) Material Calibration and Qualification, and 2) FEM Verification, Validation, and 3) Blind Predictions (Accreditation). The simulation and test comparisons performed included the damage size for both the CMC (fracture) and the steel impactor (plastic deformation), rebound velocities, SN curves for fatigue of pristine and impacted specimens at room and high temperatures. All simulations showed good correlation. The MS-PFA tool demonstrated a great potential for CMC post FOD fatigue life for part certification supported with reduced tests.

This content is only available via PDF.
You do not currently have access to this content.