This study focuses on specifics of gas turbine film cooling. Laboratory film cooling tests are important for industry because actual engine conditions are too hot, too small, and too fast to take accurate and high resolution measurements. Experiments are typically conducted using a plenum to feed coolant through round or shaped film cooling holes. Less common are experiments using cross-flow fed coolant, a method that flows coolant perpendicular to the mainstream flow and better represents engine designs. There are a few studies that have explored shaped holes in cross-flow, but none have looked at the effect cross-flow channel parameters other than Mach number.

Here, the effectiveness of film cooling is quantified by measuring adiabatic effectiveness on a flat plate with a single row of shaped film cooling holes in cross-flow. A preliminary examination of the effect of cross-flow versus plenum fed coolant on the adiabatic effectiveness of the axial 7-7-7 shaped hole, a laidback fan-shaped hole with a 30 degree injection angle, is first conducted. Subsequently, the effects of two internal coolant parameters on film cooling effectiveness are presented: Reynold’s number inside the cross-flow channel, and velocity ratio (defined as the ratio of cross-flow channel average velocity to mainstream velocity). By measuring the effect of these parameters, a chain of relative importance can be generated and applied to future experimentation. Parameters that heavily influence film cooling effectiveness can be studied further and optimized for turbine film cooling design.

This content is only available via PDF.
You do not currently have access to this content.