The present paper describes the first phase of the design and development of a realistic, high-pressure, full-scale research gas turbine combustor at Virginia Tech. The final test rig will be capable of operating at inlet temperatures of 650 K, pressures up to 9.28 Bar (120 psig), maximum air inlet flow rates of 1.27 kg/s (2.8 lbm/s), and allow for variations in the geometry of the combustor model. The first phase consists of a low-pressure (atmospheric) optical combustor for heat transfer and flow-field measurements at isothermal and reacting conditions. The combustor model is equipped with an industrial low emission fuel injector from Solar Turbines Incorporated, used in their land based gas turbine Taurus-60. The primary objective of the developed rig is to provide additional insight into the heat transfer processes that occur within gas turbine combustors, primarily the convective component, which has not been characterized. A future phase of the test rig development will incorporate a pressure vessel that will allow for the operation of the combustor simulator at higher pressures. In the present publication, the design methodology and considerations, as well as the challenges encountered during the design of the first phase of the simulator are briefly discussed. An overview is given on the design of the instrumentation and process piping surrounding the test rig, including ASME codes followed as well as the instrumentation and equipment selected. A detailed description of the test section design is given, highlighting the design for high temperature operation.

As an example of the capabilities of the rig, representative measurements are presented. Characterization of the isothermal flow field using planar Particle Image Velocimetry (PIV) at a Reynolds number of 50 000 was performed and compared with flame imaging data at the same inlet conditions operating at an equivalence ratio of 0.7. The data suggests that the flame location follows the maximum turbulent kinetic energy as measured in the isothermal field. Representative data from the computational efforts are also presented and compared with the experimental measurements. Future work will expand on both reacting and isothermal PIV and heat transfer measurements, as well as computational validations.

This content is only available via PDF.
You do not currently have access to this content.