Gas turbine combustion has a number of practical applications, including aviation engines, ocean vessels, and tanks. The various advantages of normal diffusion flames, such as increased flame stability and reduced susceptibility to dynamic instabilities, has made it the de facto industrial standard. However, high NOx emission and sooting from such flames is a major problem, particularly for heavier hydrocarbons fuels. In that regard, the inverse diffusion flame offers a feasible alternative; but the dynamic response of such a flame, particularly in ducted conditions — where the unsteady heat release interacts with the duct acoustics — is relatively less researched. In the present work, an experimental investigation of a laboratory-scale inverse diffusion flame has been carried out. The inverse diffusion flame is found in applications like rocket motors, gas turbine combustors, and furnaces. In the present study, inverse diffusion flame from a coaxial burner inside a quartz tube was studied. The position of the duct with respect to the flame was kept fixed, while the global equivalence ratio was varied by keeping the air flow rate constant and changing the fuel flow rate. Various tools of nonlinear dynamics such as phase space reconstruction and recurrence quantification have also been used for dynamic characterization of such flames. The results show that the dynamics of the flame strongly depends on the global equivalence ratio.

This content is only available via PDF.
You do not currently have access to this content.