RQL (Rich-burn/Quick-quench/Lean-burn) is a candidate to support fuel flexible stationary power generation. The equivalence ratio of rich-burn zone (Φr) and the quench air flow are paramount for implantation of the whole process. In this paper, an experimental test stand with multi-sector model combustor was established. Rich premixed combustion were used in rich zone. The experiments which pay attention to the impacts of Φr and quench air flow on the combustion performance and emission are conducted. The results show that the flame in RQL combustor is segmented when Φr >1.4, presenting flameless combustion in rich zone and a pale blue flame in lean zone. Axial temperature distribution is M-type. Two peaks appear at the head and tail of the combustion chamber, and the valley is located in the quench zone. The concentration of CO decreases rapidly in quench zone because of the injection of quench air. However, the concentration of NOx increases quickly at the same time. The outlet emissions of CO and NOx in RQL combustor are maintained at low level (<20ppm@15%O2). With a decrease of Φr from 1.4 to 1.2, the emission of NOx increases, and the emission of CO decreases. With jet-to-mainstream mass-flow ratio increases from 1.28 to 2.22., the concentration of NOx in outlet declines gently, but the CO emission increase. The average exhaust temperature depresses gradually, and the uniformity coefficient of exhaust temperature increases.

This content is only available via PDF.
You do not currently have access to this content.