Flame structures, blowout limits and emissions of swirl-stabilized premixed methane-air flames were studied experimentally in a small atmospheric combustor rig. Combustion sections with rectangular cross section (30mm by 40mm) and circular cross section (inner diameter = 39mm) were used to investigate effects of combustor geometry on the flame’s performance. Flame structures and instabilities were obtained from CH* chemiluminescence captured by a high speed intensified CMOS camera. Maps of flame blowout limits (ΦBO) versus total mass flow rates ( ṁ = 70 ∼ 130 standard liter per minute, SLPM) were obtained with the combustor inlet flow temperature (Tin) kept at Tin = 397 ± 5K and a flow swirl number of S = 0.6. Emission data of mole fraction of CO in the exhaust gas versus equivalence ratio was obtained under the conditions of Tin = 293 ± 5K and S = 0.66. It is found that the flame became longer and more unstable with decreasing equivalence ratio or increasing total mass flow rates. A strong high-amplitude and low-frequency oscillation was found to be the reason for the flame blowout. A possible reason for flame instability and blowout is presented in the paper. Within the parameters investigated in this study, the equivalence ratio had the strongest impact on flame stabilities and CO emission. Both in the rectangular and circular combustors, when the flame length increased to a critical value (LIBO, which was approximately the same for these two combustors), flame could not be stabilized anymore and blowout occurred. Compared with the rectangular combustor, the circular one had lower blowout limits and was better in stabilizing the flame. Combustor geometry did not significantly affect CO emission in the current study.
Skip Nav Destination
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
June 13–17, 2016
Seoul, South Korea
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4976-7
PROCEEDINGS PAPER
Influence of Combustor Geometry on Swirl Stabilized Premixed Methane-Air Flame
Jens Klingmann
Jens Klingmann
Lund University, Lund, Sweden
Search for other works by this author on:
Yiheng Tong
Lund University, Lund, Sweden
Mao Li
Lund University, Lund, Sweden
Jens Klingmann
Lund University, Lund, Sweden
Paper No:
GT2016-57165, V04BT04A002; 10 pages
Published Online:
September 20, 2016
Citation
Tong, Y, Li, M, & Klingmann, J. "Influence of Combustor Geometry on Swirl Stabilized Premixed Methane-Air Flame." Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Seoul, South Korea. June 13–17, 2016. V04BT04A002. ASME. https://doi.org/10.1115/GT2016-57165
Download citation file:
33
Views
0
Citations
Related Proceedings Papers
Related Articles
Investigation of the Response of an Air Blast Atomizer Combustion Chamber Configuration on Forced Modulation of Air Feed at Realistic Operating Conditions
J. Eng. Gas Turbines Power (October,2003)
Flame Structure and Stabilization Mechanisms in a Stagnation-Point Reverse-Flow Combustor
J. Eng. Gas Turbines Power (May,2008)
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
J. Eng. Gas Turbines Power (April,2006)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration