The concept of solar steam production for injection in a gas turbine combustion chamber is studied for both nominal and part load engine operation. First, a 5MW single shaft engine is considered which is then retrofitted for solar steam injection using either a tower receiver or a parabolic troughs scheme. Next, solar thermal power is used to augment steam production of an already steam injected single shaft engine without any modification of the existing HRSG by placing the solar receiver/evaporator in parallel with the conventional one.

For the case examined in this paper, solar steam injection results to an increase of annual power production (∼15%) and annual fuel efficiency (∼6%) compared to the fuel-only engine. It is also shown that the tower receiver scheme has a more stable behavior throughout the year compared to the troughs scheme that has better performance at summer than at winter. In the case of doubling the steam-to-air ratio of an already steam injected gas turbine through the use of a solar evaporator, annual power production and fuel efficiency increase by 5% and 2% respectively.

This content is only available via PDF.
You do not currently have access to this content.