In this paper, the coal-to-synthetic natural gas (SNG) technologies have been reviewed. Steam-oxygen gasification, hydrogasification, and catalytic steam gasification are the three major gasification processes used in coal-to-SNG production. So far, only the steam-oxygen gasification process is commercially proven by installing a catalytic methanation reactor downstream of the gasification process after syngas is produced, cleaned, and shifted to achieve an appropriate H2/CO ratio for methanation reaction. This process is expensive, less efficient, and time consuming. Ideally, it will be more effective and economic if methanation could be completed in an once-through entrained-flow gasifier. Technically, this idea is challenging because an effective gasification process is typically operated in a high-pressure and high-temperature condition, which is not favorable for methanation reaction, which is exothermic. To investigate this idea, a computational model is established and a sensitivity study of methanation reactions with and without catalysts are conducted in this study.

In modeling the methanation process in a gasifier, correct information of the reaction rates is extremely important. Most of known methanation reaction rates are tightly linked to the catalysts used. Since the non-catalytic reaction rates for methanation are not known in a gasifer and the issues are compounded by the fact that inherent minerals in coal ashes can also affect the methanation kinetics, modeling of methanation in an entrained-flow gasifier becomes very challenging. Considering these issues, instead of trying to obtain the correct methnation reaction rate, this study attempts to use computational model as a convenient tool to investigate the sensitivity of methane production under a wide range methanation reaction rates with and without catalysts. From this sensitivity study, it can be learned that the concept of implementing direct methanation in a once-through entrained-flow gasifier may not be attractive due to competitions of other reactions in a high-temperature environment. The production of SNG is limited to about 18% (vol) with catalytic reaction with a pre-exponential factor A in the order of 107. A further increase of the value of A to 1011 doesn’t result in more production of SNG. This SNG production limit could be caused by the high-temperature and short residence time (3–4 seconds) in the entraind-flow gasifier.

This content is only available via PDF.
You do not currently have access to this content.