Although metaheuristic techniques have recently become popular in optimization, still they are not suitable for computationally expensive real-world problems, specifically when the problems have many input variables. Among these techniques, particle swarm optimization (PSO) is one of the most well-known population-based nature-inspired algorithms which can intelligently search huge spaces of possible arrangements of design variables to solve various complex problems. The candidate solutions and accordingly the required number of evaluated particles, however, dramatically increase with the number of design variables or the dimension of the problem. This study is a major modification to an original PSO for using all previously evaluated points aiming to increase the computational efficiency. For this purpose, a metamodeling methodology appropriate for so-called high-dimensional, expensive, black-box (HEB) problems is used to efficiently generate an approximate function from all particles calculated during the optimization process. Following the metamodel construction, a term named metamodeling acceleration is added to the velocity update formula in the original PSO algorithm using the minimum of the metamodel. The proposed strategy is called the metamodel guided particle swarm optimization (MGPSO) algorithm. The superior performance of the approach is compared with original PSO using several benchmark problems with different numbers of variables. The developed algorithm is then used to optimize the aerodynamic design of a gas turbine compressor blade airfoil as a challenging HEB problem. The simulation results illustrated the MGPSO’s capability to achieve more accurate results with a considerably smaller number of function evaluations.

This content is only available via PDF.
You do not currently have access to this content.