Zero-dimensional (0D) compressor performance models, which consist of several sub-models for different loss terms, are useful tools in early design stages. In this paper, one typical model for centrifugal compressors is evaluated by comparing the loss-terms predicted by the model to data extracted from experimentally validated Large-Eddy-Simulation. The simulations were run on a truck-sized turbocharger compressor with a ported shroud and a vaneless diffuser. Four operating points are considered: One mass flow at design conditions and one mass flow close to surge, on two speedlines. The performance prediction models evaluated are impeller incidence loss, impeller skin friction loss, diffuser skin friction loss, and the tip clearance loss. Results show that the total losses are well-predicted by the model at design conditions. Friction losses are approximately independent of mass flow in the LES data, while the 0D model assumes a quadratic increase. The assumption of constant tip clearance loss is validated by the LES data, and the impeller incidence loss model also fits the data well. Due to the ported shroud, most of the losses as calculated by entropy increase occur through isobaric mixing at the impeller inlet.

This content is only available via PDF.
You do not currently have access to this content.