Aero-thermodynamic and mechanical design of a single stage axial turbine stage has been carried out for small gas turbine engine in Propulsion Division, CSIR-NAL. From the engine design configuration extract, it is envisaged that the single stage axial gas turbine operating close to 50500 rpm and at an elevated temperature of 1095K would meet the power requirement of mixed flow compressor of 385kW. This paper presents the aero-thermodynamic, mechanical design and analysis of a single stage highly loaded axial turbine stage with a stage loading coefficient of 1.45 and a flow coefficient of 0.67. The mean-line and detailed 3D aero-thermodynamic design is carried out using commercially available dedicated turbomachinery design codes Axial® and Axcent™ of Concepts NREC. The number of blades of the rotor and stator are 50 & 19 respectively. The turbine stage has undergone a series of design improvements. The final configuration of single stage turbine is analyzed using commercially available RANS CFD software ANSYS-CFX™ and NUMECAFINE™/Turbo flow solver. The design is carried out by aiming 88% total-to-total efficiency. Detailed 3D-RANS CFD analysis of the turbine shows that, the design requirements of turbine are achieved with enhanced efficiency of 90%. Mechanical design & analysis of the turbine stage is carried out using ANSYS-Mechanical™ software. Nimonic-90 material is selected for fabrication. Detailed non-linear steady thermal-structural analysis is carried out for both stator assembly and rotor BLISK. Burst margin of rotor disk is estimated to be around 63% at design speed.

This content is only available via PDF.
You do not currently have access to this content.