Transient effects are important features of engine performance calculations. The aim of this paper is to analyze a new, fully transient model implemented using the PRopulsion Object Oriented Simulation Software (PROOSIS) for a civil, short range turbofan engine. A transient turbofan model, including the mechanical inertia effect has been developed in PROOSIS. Specific physical effects such as heat soakage, mass storage, blade tip clearance and combustion delay have been implemented in the relevant components of PROOSIS to obtain a fully transient model. Since a large number of components are concerned by all the transient effects, an influence study is presented to determine which are the most critical effects, and in which components. Inertia represents the relevant phenomenon, followed by thermal effects, combustion delay and finally mass storage. The comparison with experimental data will provide a first validation of the model. Finally a sensitivity study is reported to assess the impact of uncertain knowledge of key input parameters in the response time prediction accuracy.

This content is only available via PDF.
You do not currently have access to this content.