Particle ingestion into modern gas turbine engines is known to reduce performance and may damage many primary gas path components through erosion or deposition mechanisms. Many studies have been conducted that evaluate the effects of particulate ingestion in primary and secondary gas path components. However, modern gas turbines have gas path temperatures that are above most previous studies. As a result, this study performed particle deposition experiments at the Virginia Tech Aerothermal Rig facility at engine representative temperatures. Arizona Test Dust of 20 to 40 μm was chosen to represent the particle ingested into rotorcraft turbine engines in desert and sandy environments. The experimental setup impinged air and sand particles on a flat Hastelloy X coupon. The gas and sand mixture impacted the coupon at varying angles measured between the gas flow direction and coupon face, hereby referred to as coupon angle. For this study, gas and sand particles maintained a constant flow velocity of about 70 m/s and a temperature of about 1100°C. The coupon angle was varied between 30° to 90° for all experiments. The experimental results indicate sand deposition increased linearly from about 975 °C to 1075 °C for all coupon angles. A multiple linear regression model is used to estimate the amount of deposition that will occur on the test coupon as a function of gas path temperature and coupon angle. The model is adequate in explaining about 67% of the deposition that occurs for the tests. The remaining percentage could be explained with other factors such as particle injection rates and exact surface temperature where the deposits occur.

This content is only available via PDF.
You do not currently have access to this content.