Sand accumulation can pose significant problems to wind turbines operating in the dusty Saharan environments of the Middle East and North Africa. Despite its difficulty, sand particles can be to a great extent avoided using sealed power drive trains; however, surface contamination of the blades is certainly unavoidable. As a result, aerodynamic losses and even premature separation can be incurred. To mitigate such advert consequences and avoid significant power losses, the choice of properly designed airfoil sections with low contamination sensitivity is a must. Alternatively, mitigation techniques for premature separation may also be considered. In this paper the contamination sensitivity of a number of airfoil sections widely used in the wind turbine industry is compared. Additionally, the possibility of deploying a leading edge slat to mitigate the contamination-driven performance degradation of wind turbine airfoils is explored. A two dimensional CFD model of the particle laden flow over an airfoil section is developed by solving Navier-Stokes equations along with the SST k-ω turbulence model. Additionally, a particle deposition model has been deployed via FLUENT’s discrete phase modeling capability to simulate dust particles trajectories and hence predict their accumulation rate. The preliminary results obtained indicate that airfoil sections with low surface contamination sensitivity specifically designed for wind turbines perform better under dusty conditions. Furthermore installing a leading edge slat affects the aerodynamics of the particle laden flow and may therefore be used to mitigate the adverse effects of surface contamination that otherwise would require frequent cleaning which can be expensive.

This content is only available via PDF.
You do not currently have access to this content.