Advanced oxy-combustion coupled with supercritical carbon dioxide (sCO2) power cycles offers a path to achieve efficient power generation with integrated carbon capture for base load power generation. One commonality among high efficiency sCO2 cycles is the extensive use of recuperation within the cycle. This high degree of recuperation results in high temperatures at the thermal input device and a smaller temperature rise to the turbine inlet. When combined with typical high side pressures ranging from 150 to 300 bar, these conditions pose a non-trivial challenge for fossil fired sCO2 cycles with respect to cycle layout and thermal integration. A narrow thermal input window can be tolerated for indirect cycles such as those used for nuclear power generation and concentrating solar power plants, however, it is at odds with traditional coal or natural gas fired Rankine cycles where the working fluid has been condensed and cooled to near ambient temperatures.

Coal fired sCO2 cycles using oxy-combustion have been examined by Southwest Research Institute and Thar Energy L.L.C. under DOE award DE-FE0009593. Under this project, an indirect supercritical oxy-combustion cycle was developed that provides 99% carbon capture with a 37.9% HHV plant efficiency. This cycle achieves a predicted COE of $121/MWe with no credits taken for the additional 9% of carbon capture, and represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe).

Direct fired sCO2 cycles for natural gas or syngas are currently being evaluated by Southwest Research Institute and Thar Energy L.L.C. under DOE award DE-FE0024041. Initial evaluations of direct fired supercritical oxy-combustion cycles indicate that plant efficiencies on the order of 51% to 54% can be achieved with direct fired natural gas oxy-combustion when paired with the recompression cycle with 1,200 °C firing temperatures at 200 bar.

Direct fired natural gas or syngas sCO2 cycles still face significant technology development needs, with the pressurized oxy-combustor a significant component with a low Technology Readiness Level, (TRL) as defined by the DOE. In addition to the combustion system, significant work will be required to prepare the sCO2 turbomachinery for the turbine inlet temperatures required to achieve plant efficiencies greater than 50%.

This content is only available via PDF.
You do not currently have access to this content.