This paper describes a theoretical approach to shift individual natural frequencies of centrifugal compressor impeller blades. The approach applies sizing optimization of blade’s geometry using a gradient-based optimization method. Calculation of gradients is carried out by the finite-difference method. A new centrifugal compressor blade profile generator incorporating a blade parametrization procedure is developed. The blade’s geometry is parametrized using intuitive geometric parameters. Five design parameters related to the length of the sectional profile generator line, profile thicknesses and rotation angles at hub and shroud are defined for each of the blade sectional profiles. In addition, two global design parameters are defined to control rigid rotation of the blade hub and shroud sections in circumferential direction. Four nonlinear optimization problems containing multiple frequency constraints and constraints on the static equivalent stresses are considered. The optimization aims are either shifting a particular natural frequency of a blade or minimization of blade’s mass. For instance, one of the considered optimization problems is to decrease the 1st natural frequency of an impeller blade by 5%, while the 2nd and the 3rd natural frequencies must be simultaneously increased by 5%. The analysis is applied to the centrifugal compressor of a small-size turboprop engine. A three-dimensional finite element model of the impeller blade is developed in ANSYS Mechanical software package to perform static and modal analyses. The results of the optimization show that the code can meet defined objectives and constraints with reasonable accuracy. A detailed comparison of optimized profiles with the baseline geometry is provided.

This content is only available via PDF.
You do not currently have access to this content.