Since the 1950’s, the turbine inlet temperatures of gas turbine engines have been steadily increasing as engine designers have sought to increase engine thrust-to-weight and reduce fuel consumption. In turbojets and low-bypass turbofan engines, increasing the turbine inlet temperature boosts specific thrust, which in some cases can support supersonic flight without the use of an afterburner. In high-bypass gas turbine engines, increasing the turbine inlet temperature makes possible higher bypass ratios and overall pressure ratios, both of which reduce specific fuel consumption. Increased turbine inlet temperatures, without sacrificing blade life, have been made possible through advances in blade cooling effectiveness and high-temperature turbine blade materials. Investigating the impact of higher turbine inlet temperatures and the corresponding cooling air flow rates on specific thrust, specific fuel consumption, and engine development cost is the subject of this paper. A physics-based cooling effectiveness correlation is presented for linking turbine inlet temperature to cooling flow fraction. Two cases are considered: 1) a low-bypass, mixed-exhaust, non-afterburning turbofan engine intended to support supercruising at Mach 1.5 and 2) a high-bypass, unmixed-exhaust turbofan engine intended to support highly efficient, long range flight at Mach 0.8. For each of these two cases, both baseline and enhanced cooling effectiveness values as well as both baseline and elevated turbine blade material temperatures are considered. Comparing these cases will ensure that students taking courses in preliminary engine design understand why huge research investments continue to be made in turbine blade cooling and advanced, high-temperature turbine blade material development.
Skip Nav Destination
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
June 15–19, 2015
Montreal, Quebec, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5675-8
PROCEEDINGS PAPER
Exploring the Impact of Elevated Turbine Blade Cooling Effectiveness and Turbine Material Temperatures on Gas Turbine Engine Performance and Cost
Aaron R. Byerley,
Aaron R. Byerley
USAF Academy, USAF Academy, CO
Search for other works by this author on:
August J. Rolling
August J. Rolling
USAF Academy, USAF Academy, CO
Search for other works by this author on:
Aaron R. Byerley
USAF Academy, USAF Academy, CO
August J. Rolling
USAF Academy, USAF Academy, CO
Paper No:
GT2015-44061, V006T07A003; 10 pages
Published Online:
August 12, 2015
Citation
Byerley, AR, & Rolling, AJ. "Exploring the Impact of Elevated Turbine Blade Cooling Effectiveness and Turbine Material Temperatures on Gas Turbine Engine Performance and Cost." Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy; Honors and Awards. Montreal, Quebec, Canada. June 15–19, 2015. V006T07A003. ASME. https://doi.org/10.1115/GT2015-44061
Download citation file:
63
Views
Related Proceedings Papers
Related Articles
Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilizing PPM Levels of the Highly Reactive Elements Lanthanum and Yttrium
J. Eng. Gas Turbines Power (January,1999)
Development and Turbine Engine Performance of Three Advanced Rhenium Containing Superalloys for Single Crystal and Directionally Solidified Blades and Vanes
J. Eng. Gas Turbines Power (July,1998)
Assessment of Future Aero-engine Designs With Intercooled and Intercooled Recuperated Cores
J. Eng. Gas Turbines Power (January,2011)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential