The paper presents a computational procedure for heterogeneous coupled analysis of 1D flow network models of air engine secondary air systems and 2D/3D solid thermo-mechanical finite element models of engine components. We solve an unsteady heat transfer problem over solid domain coupled to a sequence of structural static and steady flow problems using a quasi-steady state approximation. Strong coupling is achieved at each time step by a fixed-point iteration, based on the successive solution of the fluid and the solid sub-problems. The procedure is applied to a 2D axisymmetric finite element model of an intermediate pressure turbine assembly coupled to a flow network model of whole engine secondary air system simulated through a square cycle. The simulation results are compared to reference stand-alone predictions showing important non-negligible coupled effects and component interactions of a multidisciplinary multi-physical nature resolved in an efficient and automatic fashion.

This content is only available via PDF.
You do not currently have access to this content.