Rim seals are fitted in gas turbines at the periphery of the wheel-space formed between rotor discs and their adjacent casings. These seals, also called platform overlap seals, reduce the ingress of hot gases which can limit the life of highly-stressed components in the engine. This paper describes the development of a new, patented rim-seal concept showing improved performance relative to a reference engine design, using URANS computations of a turbine stage at engine conditions. The CFD study was limited to a small number of purge-flow rates due to computational time and cost, and the computations were validated experimentally at a lower rotational Reynolds number and in conditions under incompressible flow. The new rim seal features a stator-side angel wing and two buffer cavities between outer and inner seals: the angel-wing promotes a counter-rotating vortex to reduce the effect of the ingress on the stator; the two buffer cavities are shown to attenuate the circumferential pressure asymmetries of the fluid ingested from the mainstream annulus. Rotor disc pumping is exploited to reduce the sealing flow rate required to prevent ingress, with the rotor boundary layer also providing protective cooling. Measurements of gas concentration and swirl ratio, determined from static and total pressure, were used to assess the performance of the new seal concept relative to a bench-mark generic seal. The radial variation of concentration through the seal was measured in the experiments and these data captured the improvements due to the intermediate buffer cavities predicted by the CFD. This successful design approach is a potent combination of insight provided by computation, and the flexibility and expedience provided by experiment.
Skip Nav Destination
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
June 15–19, 2015
Montreal, Quebec, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5673-4
PROCEEDINGS PAPER
Design of an Improved Turbine Rim-Seal Available to Purchase
James A. Scobie,
James A. Scobie
University of Bath, Bath, UK
Search for other works by this author on:
Roy Teuber,
Roy Teuber
Siemens Industrial Turbomachinery Ltd, Lincoln, UK
Search for other works by this author on:
Yan Sheng Li,
Yan Sheng Li
Siemens Industrial Turbomachinery Ltd, Lincoln, UK
Search for other works by this author on:
Carl M. Sangan,
Carl M. Sangan
University of Bath, Bath, UK
Search for other works by this author on:
Michael Wilson,
Michael Wilson
University of Bath, Bath, UK
Search for other works by this author on:
Gary D. Lock
Gary D. Lock
University of Bath, Bath, UK
Search for other works by this author on:
James A. Scobie
University of Bath, Bath, UK
Roy Teuber
Siemens Industrial Turbomachinery Ltd, Lincoln, UK
Yan Sheng Li
Siemens Industrial Turbomachinery Ltd, Lincoln, UK
Carl M. Sangan
University of Bath, Bath, UK
Michael Wilson
University of Bath, Bath, UK
Gary D. Lock
University of Bath, Bath, UK
Paper No:
GT2015-42327, V05CT15A006; 12 pages
Published Online:
August 12, 2015
Citation
Scobie, JA, Teuber, R, Li, YS, Sangan, CM, Wilson, M, & Lock, GD. "Design of an Improved Turbine Rim-Seal." Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 5C: Heat Transfer. Montreal, Quebec, Canada. June 15–19, 2015. V05CT15A006. ASME. https://doi.org/10.1115/GT2015-42327
Download citation file:
59
Views
Related Proceedings Papers
Related Articles
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part II: CFD Simulations
J. Turbomach (October,2011)
Design of an Improved Turbine Rim-Seal
J. Eng. Gas Turbines Power (February,2016)
Numerical Characterization of Hot-Gas Ingestion Through Turbine Rim Seals
J. Eng. Gas Turbines Power (March,2017)
Related Chapters
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Pulsating Supercavities: Occurrence and Behavior
Proceedings of the 10th International Symposium on Cavitation (CAV2018)