The present work computationally examines the scaling of a fan-shaped hole’s film-cooling performance from a near ambient temperature to an engine temperature on a flat plate. Heat flux distributions for both film-cooled and non-film-cooled cases were computed for several isothermal boundary conditions. Cases with engine representative freestream temperatures and near ambient temperatures were examined.

This study first shows that the adiabatic wall temperatures interpolated from the isothermal results were lower than those measured directly using an adiabatic wall boundary condition. This was due to the presence of a thermal boundary layer in the isothermal results, which would not develop for the adiabatic case. As a result, the adiabatic effectiveness found with adiabatic models will not represent the true thermal condition found in the engine. Finally, this study shows that both the adiabatic effectiveness interpolated from the isothermal results and Net Heat Flux Reduction can be scaled from low temperature to high temperature by proper non-dimensional matching.

This content is only available via PDF.
You do not currently have access to this content.