In recent years, conjugate heat transfer (CHT) computational fluid dynamics (CFD) simulation in turbomachinery played an important role in predicting metal temperature. Most of research papers of CHT CFD simulation were emphasized on the mixing plane method. In this paper the ANSYS CFX 14.0 CHT simulation using the frozen rotor approach is employed to predict the blade temperatures. The frozen rotor included five time instances in which the stator-rotor wake influence could be captured.

In this study, the temperature predictions using the frozen rotor approach were compared to the mixing plane predictions and Silicon Carbide (SiC) chip measurements on three different radial spans. The frozen rotor results predicted the minimum and maximum temperatures that bounded the SiC chip data. Compared to the mixing plane predictions, the frozen rotor approach results were similar within 8 K at the mid-span. However, the frozen rotor approach provided more insight information and detailed guidance for model calibration. Finally several future works were suggested to continue striving for high performance gas turbines.

This content is only available via PDF.
You do not currently have access to this content.