The Organic Rankine Cycle (ORC) offers great potential for waste heat recovery and use of low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low temperature level, and it is, therefore, of major importance to design ORC components with high efficiencies and minimized losses. The use of organic fluids creates new challenges for turbine design, due to dense gas behavior and the low speed of sound. The design and performance predictions for steam and gas turbines have been initially based on measurements and numerical simulations of flow through two-dimensional cascades of blades. In case of ORC turbines and related fluids, such an approach requires the use of a specially designed closed cascade wind tunnel. In this contribution the design and process engineering of a continuous running wind tunnel for organic vapors is presented. The wind tunnel can be operated with heavy weight organic working fluids within a broad range of pressure and temperature levels. For this reason, the use of classical design rules for atmospheric wind tunnels is limited. The thermodynamic cycle process in the closed wind tunnel is modeled and simulated by means of a professional power plant analysis tool, including a database for the ORC fluid properties under consideration. The wind tunnel is designed as a pressure vessel system and this leads to significant challenges particular for the employed wide angle diffuser, settling chamber, and nozzle. Detailed computational fluid dynamics analyses (CFD) were performed in order to optimize the important wind tunnel sections.
Skip Nav Destination
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
June 15–19, 2015
Montreal, Quebec, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5667-3
PROCEEDINGS PAPER
Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors
Felix Reinker,
Felix Reinker
Muenster University of Applied Sciences, Steinfurt, Germany
Search for other works by this author on:
Karsten Hasselmann,
Karsten Hasselmann
Muenster University of Applied Sciences, Steinfurt, Germany
Search for other works by this author on:
Stefan aus der Wiesche,
Stefan aus der Wiesche
Muenster University of Applied Sciences, Steinfurt, Germany
Search for other works by this author on:
Eugeny Y. Kenig
Eugeny Y. Kenig
University of Paderborn, Paderborn, Germany
Search for other works by this author on:
Felix Reinker
Muenster University of Applied Sciences, Steinfurt, Germany
Karsten Hasselmann
Muenster University of Applied Sciences, Steinfurt, Germany
Stefan aus der Wiesche
Muenster University of Applied Sciences, Steinfurt, Germany
Eugeny Y. Kenig
University of Paderborn, Paderborn, Germany
Paper No:
GT2015-42372, V003T06A008; 11 pages
Published Online:
August 12, 2015
Citation
Reinker, F, Hasselmann, K, aus der Wiesche, S, & Kenig, EY. "Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors." Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration. Montreal, Quebec, Canada. June 15–19, 2015. V003T06A008. ASME. https://doi.org/10.1115/GT2015-42372
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors
J. Eng. Gas Turbines Power (May,2016)
Scaling of Gas Turbine From Air to Refrigerants for Organic Rankine Cycle Using Similarity Concept
J. Eng. Gas Turbines Power (June,2016)
Assessment of Waste Heat Recovery From a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator
J. Eng. Gas Turbines Power (April,2013)
Related Chapters
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration